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LE'ITER TO THE EDITOR 

Population statistics and the counting process 

E Jakeman and T J Shepherd 
Royal Signals and Radar Establishment, Great Malvern, Worcestershire, WR14 3PS, UK 

Received 12 June 1984 

Abstract. We investigate the outcome of different monitoring schemes applied to small 
classical populations. Explicit calculation for a solvable model establishes the relationship 
between the statistical properties of the population and those of the counting processes. 
Parallels are drawn with operator ordering in the second quantised formulation of photo- 
detection. 

The detection of a quantised electromagnetic field is analogous to the monitoring of 
a classical population of individuals. The statistical properties of such a population 
are normally ascertained by analysing a representative (random) sample of individuals 
using a simple counting procedure which leaves the overall population unaffected. 
This is similar to the so-called quantum non-demolition measurement (Caves 1983). 
However, other monitoring schemes can be devised which are more closely related to 
detection by quantum annihilation (Glauber 1965). In this note the outcomes of two 
such monitoring schemes are investigated. Explicit calculations for an exactly solvable 
model show that the statistical properties of the counting process do not truly reflect 
those of the population being monitored and that there is significant loss of information 
in the case of small populations. The results provide further insight into the relationship 
between photo-electron counting statistics and the quantised nature of optical fields. 

The population model and monitoring schemes to be investigated are as follows. 
A localised population of individuals is governed by a simple birth-death-immigration 
process (Bartlett 1966). The birth rate AN and death rate y N  are dependent on the 
population N whilst the immigration rate Y is not. The death rate per individual y 
is the sum of an internal process pi and a population dependent emigration process 
specified by the rate E. In monitoring scheme 1, a counter located within the population 
absorbs (kills off) individuals at a (death) rate y N  whilst registering the number 
absorbed in time intervals of duration t which may or may not be contiguous. It is 
clear at the outset that this scheme will change the population process and not provide 
a true measure of the unperturbed statistics. It is also evident that different results 
will be obtained according to whether the counter is switched off or not between 
intervals during which absorption events are registered. For simplicity it will be 
assumed in the following that the counter is in fact open (absorbing) all the time. In 
monitoring scheme 2, the counter is located outside the population and absorbs only 
a fraction 5 of the emigrating individuals, again registering the number absorbed during 
time intervals of duration f. In this case the population process is not affected and 
whether or not the counter actually absorbs individuals is of no consequence in the 
calculations. Monitoring scheme 2 is clearly a remote, non-perturbative method; 
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nevertheless we shall find that the counting statistics do not provide a true measure 
of the population statistics. This is because the counting statistics relate to a frux of 
individuals whilst the population statistics relate to the number of individuals present 
at a given instant of time. 

The birth-death-immigration process has been investigated by many authors; 
however, in order to facilitate the incorporation of monitoring schemes it is useful to 
derive the rate equation for the process from first principles. Let P ( N ;  t )  be the 
probability of finding N individuals in the population at time t. Then, assuming the 
population can only change through the gain or loss of single individuals during time 
intervals of su'fficiently short duration At, 

P ( N ;  t +At) = p ( N  + l )P(N + 1 ; t )At  + A ( N -  l )P(N- 1 ; ?)At  
(1) 

+ v P ( N - l ;  t ) A t + [ l - ( A + p ) N A t - v A t ] P ( N ;  t ) .  

This equation expresses the probability of finding N individuals at time t + A t  as the 
sum of the probabilities of a death occurring during the interval A t  in a population 
of N+1 individuals, a birth occurring or an 'immigrant' arriving during A t  in a 
population of N - 1 individuals and the probability of having no change in a population 
of N individuals present at time t. Subtracting P ( N ;  t )  from both sides, dividing by 
At and taking the limit A t  + 0 yields the rate equation 

dPN/dt = p( N + l ) P N + I  - [( h + p )  N + V ] ~ N  + [A ( N  - 1) + V ] ~ N - I  (2) 

where PN = P ( N ;  t ) .  This equation is most easily solved by using the generating 
function 

which satisfies the partial differential equation 

ag/at=z[ -p + A ( ~ - z ) ] ~ Q / ~ z - v z Q .  (4) 

Now consider monitoring scheme 1. Let P'l'(n, N ;  t )  be the joint probability of 
finding N individuals in the population at time t and of registering n 'absorptions' 
during the sample or integration interval [0, t ] .  Then, assuming that the probability 
of registering a count during a short time At is proportional to v N A t ,  

P'l'(n, N ;  t + A t )  

= p ( N + l ) P ' ' ) ( n , N + l ;  t )At+A(N-l )P" ' (n ,N- l ;  t )At  

+ v P ( ' ) ( I I ,  N-1; t )At+v(N+l )P"' (n - l ,  N + 1 ;  t )At  

+[1 - ( p  + v  + A ) N A t - v A t ] P ( n ,  N ;  t )  ( 5 )  

where the absorption of an individual by the counter is accompanied by a corresponding 
loss from the population. A rate equation for P'I) can be obtained as before, but for 
brevity we shall set down here only the equation satisfied by the generating function 

m 

Q ( ' ) ( S ,  2 ;  t )  = c ( 1  - S y (  1 - z)NP'"(n, N ;  t ) .  
n , N = O  

This may be written in the form 
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In monitoring scheme 2 we shall assume that the probability of registering a count 
is proportional to ElAt  for sufficiently short intervals At. Thus if P(')(n, ne, N ;  t )  is 
the joint probability of finding N individuals in the population at time t, ne emigrants 
during the interval [0, t ]  and of registering n of these emigrations, then 

P'2'(n, ne, N ;  t + A t )  

= p i ( N +  l)P'"(n, ne, N + 1 ; t ) A t  + A ( N -  l)P'"(n, ne, N - 1 ; t ) A t  

+ ~ P ( ~ ) ( n , n ~ ,  N - 1 ;  t ) A t + ~ ( l - ~ ) ( N + l ) P ' ' ) ( ~ , ~ , - l , N + l ~  t ) A t  

+ E ~ ( N +  l)P'"(n - 1, ne-  1, N + 1 ;  t )At  

+[ l - (p+A)Nht-vAt]P(n,n, ,  N ;  t ) .  (8) 

This equation can be summed over the number of emigrations, which are not of interest, 
and converted into a rate equation as before. Again for brevity we quote only the 
equation satisfied by the generating function defined as in equation (6): 

~3Q(')/c3t = Z[ - p + A (  1 - z)] c3Q"'/c3~ - V Z Q ( ~ '  + E& aQ(')/dz. (9) 

The general solution of equation (4) is well known. Provided that p > A  the 
population reaches equilibrium with a negative binomial distribution 

N - a + l  ( N / a y  
p N = (  N ) ( l + N / a ) N + a  

and bilinear moment 

( N ( O ) N ( T ) ) / N '  = 1 +(a-' + N-') exp [ - ( p  - A ) 1 ~ 1 ]  (11) 

where fi = v/(p - A )  and a = v/A. 
Recently solutions of equations of the form (7) and (9) valid for arbitrary integration 

time have also appeared in the literature (Jakeman 1980, Shepherd 1981). Unless this 
time interval is short compared to ( p  - A ) - ' ,  however, the monitoring process will 
average over fluctuations in the population and provide a poor measure of its statistical 
behaviour. Assuming then that the sample time t<< ( p  - A ) - '  we find from previous 
results that in equilibrium 

and 

(n ( i ) (o )n ' i ) (T) ) / (~ ( i ) )2  = 1 +a-' exp ( - F i ) \ T 1 )  

A ( ' )  = 7)Nf / (  1 + 7)N/ v ) ,  

(13) 
where 

p + 7) - A ,  
= ElNr, r(2) = - I\. 

The single interval statistics of the counting process (12) are evidently identical to 
those of the population process (10) apart from a simple scaling of the mean. The 
scaling is not linear in the case of monitoring scheme 1 because of its perturbing effect. 
This also results in a reduced relaxation time by comparison with the original population 
process (cf equations (1 1) and (13)). Monitoring scheme 2 is more 'satisfactory' in 
these respects, but in common with scheme 1 it does result in a bilinear moment which 
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is structurally different from that of the population process: there is no term in equation 
(13) corresponding to the A-' term on the right-hand side of equation (1 1). This is 
particularly significant in the special case A = 0 (a + 00). Equations (2) and (4) then 
describe a 'Poisson' process with 

P~ = ( " I N ! )  exp(-A) (14) 

( N ( O ) N ( T ) ) / N ' =  1 +A-' exp(-p.(T)). (15) 

and 

The population is Poisson distributed and exhibits fluctuations on a time scale p-l 
though the fluctuations will be of small amplitude if the average number of individuals 
is large. On the other hand, the counting process has statistical properties 

P,, = ( t i " / n ! )  exp(-ti), (16) 

(n (O)n( T ) ) /  A* = 1, (17) 

and therefore exhibits no fluctuations! 
Two special cases of the population process, equation (2), can be derived as 

asymptotic limits of the Scully-Lamb laser theory (Scully and Lamb 1967). The Poisson 
process A = 0 considered above corresponds to a single mode laser operating well 
above threshold, whilst the 'Thermal' or 'Geometric' process v = A (where A represents 
both stimulated and spontaneous emission rates) corresponds to a laser operating well 
below threshold. It is well known that in neither case do terms similar to the 15-I 
term on the right-hand side of equation ( 1  1 )  actually appear in theoretical expressions 
for the correlation functions measured by photon counting techniques. This is a direct 
consequence of the operator sidering used in the definition of these quantities. For 
example, apart from a constant of proportionality, the correlation function of photo- 
counts for a single mode optical field is defined by the normally ordered expression 
(Glauber 1965): 

(18) G"'( T )  = Tr $+(O)i?( T )  a^( T )  c?( 0), 

where a^( T )  is a field mode operator in the Heisenberg picture and p̂  the density matrix. 
Equation ( 18) is more transparent when expressed in the number representation 
(Hildred 1980): 

where 

PM = ( ~ I b l M )  
and 

P ( N I M  - 1,T) = (NleiiTIM - 1 ) ( ~  - 1 1 ~ )  (20) 

is the conditional probability of finding the field in state IN) at time t = T given that 
it was in a pure state IM - 1) at t = 0 (eii' is the time development super-operator of 
the field). The probability distributions appearing in (19) are analogous to those 
characterising the population statistics described earlier and are frequently obtained 
as solutions of equations similar to equation (2) as we have already mentioned. It is 
therefore interesting to compare (19) with the analogous expression used to define the 
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bilinear moment of the population fluctuations and used for example to derive results 
(11) 

Evidently the conditional distributions on the right-hand side of equations (19) and 
(21) are slightly different. In fact it is not difficult to check using the known solutions 
of equation (2) that if formula (19) had been used to derive the bilinear moment rather 
than formula (21) then the N-’ term would not have appeared in result (1 1). This 
would have then been structurally identical to equation (13) and completely indistin- 
guishable if monitoring scheme 2 had been adopted. Thus it appears that defining the 
correlation function (18) in terms of normally ordered operators may be analogous to 
measurement using monitoring scheme 2 discussed above. This hypothesis can be 
explored further by considering the definition of the bilinear moment of the counting 
distribution 

where p ( n ,  m ;  7, T )  is the joint probability of registering a count n in the sample 
interval T at time zero and in the sample interval at time T(> T ) .  This can be expressed 
in terms of a sum over conditional probabilities and the equilibrium population 
distribution PM (Shepherd 1981): 

p ( n ,  m ;  T, T )  = (23) P(n, M’IM; T ) P ( m ’ ,  NIM’;  T -  T ) P ( m ,  M”IN; T)PMy 
M M ’ M “  
Nm‘ 

where P(n, N I M ;  T )  is the joint probability of registering n counts in the interval 
[ t ,  t + TI and N individuals present in the population at time t + T conditional on 
there being M at time t. Note that this quantity corresponds to the solution of equations 
(7 )  or (9), which are conditional on the boundary values at t = 0, although this fact 
was not included in the notation used earlier for reasons of clarity. Equation (23) can 
be simplified for short integration times (for example T<< ( p  - A ) - ’  in the above 
example) by observing that the terms n, m = 0 do not contribute to the sum (22) whilst 
for sufficiently small T (scheme 2) 

nP(n, N I M ;  T ) =  &lhfT8,,J8MM-I,N + o ( T 2 )  

and (24) 
P ( m ’ ,  NIM’; T -  T )  = P ( m ‘ ,  NIM’; T) +0( T ) .  

Performing the sums over M’M”m’ and n and m in equation (22) we find that 

which is structurally identical to equation (19) apart from a normalisation factor. 
Thus the normal ordering of operators in the theory of photo detection is closely 

analogous to the adoption of flux monitoring schemes in classical population statistics. 
In this letter we have confined ourselves to consideration of two-fold statistics and it 
would be interesting to establish similar analogies in the case of higher order joint 
statistical properties and explore the relationship between these analogies and the 
Markovian assumption inherent in the calculations we have described. It is obviously 
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possible to extend the above approach to systems in which, for example, internal 
population processes involve only transitions of two individuals in very short time 
intervals (eg two-photon transitions: see for example Loudon 1983); in that case the 
detection mechanisms described here would necessarily introduce single-individual 
events (one-photon transitions, or quantum damping, Louisell 1973) into the system, 
destroying the conservation of parity in population number N. Alternatively, analogous 
treatments can be considered in relation to the detection or counting process: two- 
photon detectors have already received some attention (Jaiswal and Agarwal 1969) 
while detectors operating through stimulated emission have been shown to possess 
coherence functions associated with anti-normal ordering of field operators (Mandel 
1966, Perina 197 1). A population-statistical analysis of these and other detection 
mechanisms would be valuable in helping to assess the relative merits of different 
systems in relation to detector noise. 
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